Z80°-CPU Z80A-CPU

Product Specification

MARCH 1978

The Zilog Z80 product line is a complete set of micro-computer components, development systems and support software. The Z80 microcomputer component set includes all of the circuits necessary to build high-performance microcomputer systems with virtually no other logic and a minimum number of low cost standard memory elements.

The Z80 and Z80A CPU's are third generation single chip microprocessors with unrivaled computational power. This increased computational power results in higher system through-put and more efficient memory utilization when compared to second generation microprocessors. In addition, the Z80 and Z80A CPU's are very easy to implement into a system because of their single voltage requirement plus all output signals are fully decoded and timed to control standard memory or peripheral circuits. The circuit is implemented using an N-channel, ion implanted, silicon gate MOS process.

Figure 1 is a block diagram of the CPU, Figure 2 details the internal register configuration which contains 208 bits of Read/Write memory that are accessible to the programmer. The registers include two sets of six general purpose registers that may be used individually as 8-bit registers or as 16-bit register pairs. There are also two sets of accumulator and flag registers. The programmer has access to either set of main or alternate registers through a group of exchange instructions. This alternate set allows foreground/background mode of operation or may be reserved for very fast Interrupt response. Each CPU also contains a 16-bit stack pointer which permits simple implementation of

multiple level interrupts, unlimited subroutine nesting and simplification of many types of data handling.

The two 16-bit index registers allow tabular data manipulation and easy implementation of relocatable code. The Refresh register provides for automatic, totally transparent refresh of external dynamic memories. The I register is used in a powerful interrupt response mode to form the upper 8 bits of a pointer to a interrupt service address table, while the interrupting device supplies the lower 8 bits of the pointer. An indirect call is then made to this service address.

FEATURES

- Single chip, N-channel Silicon Gate CPU.
- 158 instructions—includes all 78 of the 8080A instructions with total software compatibility. New instructions include 4-, 8- and 16-bit operations with more useful addressing modes such as indexed, bit and relative.
- 17 internal registers.
- Three modes of fast interrupt response plus a nonmaskable interrupt.
- Directly interfaces standard speed static or dynamic memories with virtually no external logic.
- 1.0 μ s instruction execution speed.
- Single 5 VDC supply and single-phase 5 volt Clock.
- Out-performs any other single chip microcomputer in
 4-, 8-, or 16-bit applications.
- All pins TTL Compatible
- Built-in dynamic RAM refresh circuitry.

Z80, Z80A CPU PIN CONFIGURATION

A₀-A₁₅ (Address Bus)

Tri-state output, active high. A₀-A₁₅ constitute a 16-bit address bus. The address bus provides the address for memory (up to 64K bytes) data exchanges and for I/O device data exchanges.

D₀-D₇ (Data Bus)

Tri-state input/output, active high. D_0 - D_7 constitute an 8-bit bidirectional data bus. The data bus is used for data exchanges with memory and I/O devices.

M₁ (Machine Cycle one) Output, active low. $\overline{M_1}$ indicates that the current machine cycle is the OP code fetch cycle of an instruction execution.

MREQ (Memory Request) Tri-state output, active low. The memory request signal indicates that the address bus holds a valid address for a memory read or memory write operation.

IORQ (Input/ Output Request)

Tri-state output, active low. The IORQ signal indicates that the lower half of the address bus holds a valid I/O address for a I/O read or write operation. An IORQ signal is also generated when an interrupt is being acknowledged to indicate that an interrupt response vector can be placed on the data bus.

RD (Memory Read) Tri-state output, active low. RD indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.

WR (Memory Write)

Tri-state output, active low. WR indicates that the CPU data bus holds valid data to be stored in the addressed memory or I/O device.

RFSH (Refresh)

Output, active low. RFSH indicates that the lower 7 bits of the address bus contain a refresh address for dynamic memories and the current MREQ signal should be used to do a refresh read to all dynamic memories.

HALT (Halt state)

Output, active low. HALT indicates that the CPU has executed a HALT software instruction and is awaiting either a non-maskable or a maskable interrupt (with the mask enabled) before operation can resume. While halted, the CPU executes NOP's to maintain memory refresh activity.

WAIT (Wait)

Input, active low. WAIT indicates to the Z-80 CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter wait states for as long as this signal is active.

INT (Interrupt Request)

Input, active low. The Interrupt Request signal is generated by I/O devices. A request will be honored at the end of the current instruction if the internal software controlled interrupt enable flip-flop (IFF) is enabled.

NMI (Non Maskable Interrupt)

Input, active low. The non-maskable nterrupt request line has a higher priority than INT and is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop. NMI automatically forces the Z-80 CPU to restart to location 0066_H.

RESET

Input, active low. RESET initializes the CPU as follows: reset interrupt enable flip-flop, clear PC and registers I and R and set interrupt to 8080A mode. During reset time, the address and data bus go to a high impedance state and all control output signals go to the inactive state.

BUSRQ (Bus Request)

Input, active low. The bus request signal has a higher priority than $\overline{\text{NMI}}$ and is always recognized at the end of the current machine cycle and is used to request the CPU address bus, data bus and tri-state output control signals to go to a high impedance state so that other devices can control these busses.

BUSAK (Bus Acknowledge) Output, active low. Bus acknowledge is used to indicate to the requesting device that the CPU address bus, data bus and tri-state control bus signals have been set to their high impedance state and the external device can now control these signals.

INSTRUCTION OP CODE FETCH

The program counter content (PC) is placed on the address bus immediately at the start of the cycle. One half clock time later \overline{MREQ} goes active. The falling edge of \overline{MREQ} can be used directly as a chip enable to dynamic memories. \overline{RD} when active indicates that the memory data should be enabled onto the CPU data bus. The CPU samples data with the rising edge of the clock state T_3 . Clock states T_3 and T_4 of a fetch cycle are used to refresh dynamic memories while the CPU is internally decoding and executing the instruction. The refresh control signal \overline{RFSH} indicates that a refresh read of all dynamic memories should be accomplished.

MEMORY READ OR WRITE CYCLES

Illustrated here is the timing of memory read or write cycles other than an OP code fetch (M_1 cycle). The \overline{MREQ} and \overline{RD} signals are used exactly as in the fetch cycle. In the case of a memory write cycle, the \overline{MREQ} also becomes active when the address bus is stable so that it can be used directly as a chip enable for dynamic memories. The \overline{WR} line is active when data on the data bus is stable so that it can be used directly as a R/W pulse to virtually any type of semiconductor memory.

INPUT OR OUTPUT CYCLES

Illustrated here is the timing for an I/O read or I/O write operation. Notice that during I/O operations a single wait state is automatically inserted (Tw^*). The reason for this is that during I/O operations this extra state allows sufficient time for an I/O port to decode its address and activate the \overline{WAIT} line if a wait is required.

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

The interrupt signal is sampled by the CPU with the rising edge of the last clock at the end of any instruction. When an interrupt is accepted, a special M_1 cycle is generated. During this M_1 cycle, the \overline{IORQ} signal becomes active (instead of \overline{MREQ}) to indicate that the interrupting device can place an 8-bit vector on the data bus. Two wait states (Tw*) are automatically added to this cycle so that a ripple priority interrupt scheme, such as the one used in the Z80 peripheral controllers, can be easily implemented.

Z80, Z80A Instruction Set

The following is a summary of the Z80, Z80A instruction set showing the assembly language mnemonic and the symbolic operation performed by the instruction. A more detailed listing appears in the Z80-CPU technical manual, and assembly language programming manual. The instructions are divided into the following categories:

8-bit loads Miscellaneous Group
16-bit loads Rotates and Shifts
Exchanges Bit Set, Reset and Test
Memory Block Moves Input and Output

Memory Block Searches
8-bit arithmetic and logic
16-bit arithmetic
General purpose Accumulator

Sumps
Calls
Restarts
Returns

& Flag Operations

In the table the following terminology is used.

b \equiv a bit number in any 8-bit register or memory location

cc ≡ flag condition code

 $NZ \equiv \text{non zero}$ $Z \equiv \text{zero}$ $NC \equiv \text{non carry}$ $C \equiv \text{carry}$

PO ≡ Parity odd or no over flow PE ≡ Parity even or over flow

 $P \equiv Positive$

 $M \equiv Negative (minus)$

e	≡ 8-bit signed 2's complement displacement used in	
	relative jumps and indexed addressing	
L	≡ 8 special call locations in page zero. In decimal	
	notation these are 0, 8, 16, 24, 32, 40, 48 and 56	
n	≡ any 8-bit binary number	
nn	≡ any 16-bit binary number	
r	= any 8-bit general purpose register (A, B, C, D, E,	
	H, or L)	
S	≡ any 8-bit source register or memory location	
s_b	= a bit in a specific 8-bit register or memory location	l
SS	≡ any 16-bit source register or memory location	
subsc	ript "L" ≡ the low order 8 bits of a 16-bit register	
subsc	ript "H" ≡ the high order 8 bits of a 16-bit register	
()	\equiv the contents within the () are to be used as a	
` ,	pointer to a memory location or I/O port number	
8-bi	t registers are A, B, C, D, E, H, L, I and R	
16-bi	t register pairs are AF, BC, DE and HL	
16-bi	t registers are SP, PC, IX and IY	
Addr	essing Modes implemented include combinations of	

= any 8-bit destination register or memory location

≡ any 16-bit destination register or memory location

d

dd

Addressing Modes implemented include combinations of the following:

Immediate Indexed

Immediate extended Register

Modified Page Zero Implied

Relative Register Indirect

Extended Bit

	Mnemonic	Symbolic Operation	Comments
	LD r, s	$r \leftarrow s$	$s \equiv r, n, (HL),$ (IX+e), (IY+e)
ADS	LD d, r	d ← r	$d \equiv (HL), r$ (IX+e), (IY+e)
8-BIT LOADS	LD d, n	d ← n	$d \equiv (HL),$ $(IX+e), (IY+e)$
8-B	LD A, s	$A \leftarrow s$	$s \equiv (BC), (DE),$ (nn), I, R
	LD d, A	$d \leftarrow A$	$d \equiv (BC), (DE),$ $(nn), I, R$
	LD dd, nn	dd ← nn	$dd \equiv BC, DE,$
,	LD dd, (nn)	dd ←(nn)	HL, SP, IX, IY $dd \equiv BC, DE,$ HL, SP, IX, IY
16-BIT LOADS	LD (nn), ss	(nn) ← ss	$ss \equiv BC, DE,$ HL, SP, IX, IY
16-BIT	LD SP, ss PUSH ss	$SP \leftarrow ss$ $(SP-1) \leftarrow ss_H; (SP-2) \leftarrow ss_L$	ss = HL, IX, IY ss = BC, DE,
	POP dd	$dd_L \leftarrow (SP); dd_H \leftarrow (SP+1)$	HL, AF, IX, IY dd = BC, DE, HL, AF, IX, IY
S	EX DE, HL	DE ↔ HL	
EXCHANGES	EX AF, AF'	$ \begin{pmatrix} AF \leftrightarrow AF' \\ BC \\ DE \\ HL \end{pmatrix} \leftrightarrow \begin{pmatrix} BC' \\ DE' \\ HL' \end{pmatrix} $	
_	EX (SP), ss	$(SP) \leftrightarrow ss_L, (SP+1) \leftrightarrow ss_H$	$ss \equiv HL, IX, IY$

Extended Dit							
	Mnemonic	Symbolic Operation	Comments				
MOVES	LDI LDIR	(DE) ← (HL), DE ← DE+1 HL ← HL+1, BC ← BC-1 (DE) ← (HL), DE ← DE+1 HL ← HL+1, BC ← BC-1					
MEMORY BLOCK MOVES	LDD LDDR	Repeat until BC = 0 (DE) \leftarrow (HL), DE \leftarrow DE-1 HL \leftarrow HL-1, BC \leftarrow BC-1 (DE) \leftarrow (HL), DE \leftarrow DE-1 HL \leftarrow HL-1, BC \leftarrow BC-1 Repeat until BC = 0					
S	СРІ	A-(HL), HL ← HL+1					
MEMORY BLOCK SEARCHES	CPIR	BC ← BC-1 A-(HL), HL ← HL+1 BC ← BC-1, Repeat until BC = 0 or A = (HL)	A-(HL) sets the flags only. A is not affected				
Y BLO	CPD	A-(HL), HL ← HL-1 BC ← BC-1					
MEMOR	CPDR	A-(HL), HL ← HL-1 BC ← BC-1, Repeat until BC= 0 or A = (HL)					
	ADD s	$A \leftarrow A + s$					
	ADC s	$A \leftarrow A + s + CY$	CY is the				
ιLU	SUB s	$A \leftarrow A - s$	carry flag				
8-BIT ALU	SBC s AND s	$A \leftarrow A - s - CY$ $A \leftarrow A \wedge s$	$s \equiv r, n, (HL)$ (IX+e), (IY+e)				
8	OR s	$\begin{array}{c} \mathbf{A} \leftarrow \mathbf{A} \vee \mathbf{S} \\ \mathbf{A} \leftarrow \mathbf{A} \vee \mathbf{S} \end{array}$					
	XOR s	$A \leftarrow A \oplus S$					
	XOR s	$A \leftarrow A \oplus S$]				

	Mnemonic	Symbolic Operation	Comments
_	CP s	A - s	s = r, n (HL)
8-BIT ALU	INC d	d ← d + 1	(IX+e), (IY+e)
BIT			d = r, (HL)
8-	DEC d	d ← d – 1	(IX+e), (IY+e)
	ADD HL, ss	HL ← HL + ss	
	ADC HL, ss	HL ← HL + ss + CY	$ss \equiv BC, DE$
TIC	SBC HL, ss	HL ← HL – ss – CY	HL, SP
16-BIT ARITHMETIC	ADD IX, ss	$IX \leftarrow IX + ss$	$ss \equiv BC, DE,$
RITE			IX, SP
r AF	ADD IY, ss	$IY \leftarrow IY + ss$	$ss \equiv BC, DE,$ IY, SP
-BĽ	INC dd	dd ← dd + 1	$dd \equiv BC, DE,$
1	11,0 44	au au i	HL, SP, IX, IY
	DEC dd	dd ← dd - 1	$dd \equiv BC, DE,$
			HL, SP, IX, IY
	DAA	Converts A contents into	Operands must
١Ğ		packed BCD following add	be in packed
FL/		or subtract.	BCD format
GP ACC. & FLAG	CPL	$A \leftarrow \overline{A}$	
AC	NEG	$A \leftarrow 00 - A$	
G	CCF	$CY \leftarrow \overline{CY}$	
	SCF	CY ← 1	
	NOP	No operation	
SO	HALT	Halt CPU	
VEO	DI	Disable Interrupts	
ELLANEOUS	EI	Enable Interrupts	
CEI	IM O	Set interrupt mode 0	8080A mode
MISCI	IM 1	Set interrupt mode 1	Call to 0038 _H
	IM 2	Set interrupt mode 2	Indirect Call
	RLC s	CY 7 0 0 S	
	RL s	CY 7 0 0 S	
	RRC s	7 0 CY	
IFTS	RR s	7 0 CY	
'ND SH	SLA s	7 0 0 S	$s \equiv r, (HL)$ (IX+e), (IY+e)
ROTATES AND SHIFTS	SRA s	7 - 0 CY	
ROT	SRL s	0 - 7 - 0 - CY S	
	RLD	7 4 3 0 7 4 3 7 (HL)	
	RRD	7 4 3 0 7 4 3 0 (HL)	

BIT b, s $Z \leftarrow \overline{s_b}$ SET b, s $s_b \leftarrow 1$ RES b, s $s_b \leftarrow 0$ $S_b \leftarrow 1$ RES b, s $s_b \leftarrow 0$ $S_b \leftarrow$	1	Mnemonic	Symbolic Operation	Comments
	વ્ય	BIT b, s	$Z \leftarrow \overline{s_b}$	Z is zero flag
	S. R	, i		,
	ВІТ	RES b, s	$s_b \leftarrow 0$	(IX+e), (IY+e)
INI				
INIR $ \begin{array}{c} B \leftarrow B - 1 \\ (HL) \leftarrow (C), HL \leftarrow HL + 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 IND $ \begin{array}{c} (HL) \leftarrow (C), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 INDR $ \begin{array}{c} (HL) \leftarrow (C), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUT(n), A $ \begin{array}{c} (OUT(n), A \\ OUT(C), r \\ OUTI \\ (C) \leftarrow (HL), HL \leftarrow HL + 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL + 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1 \end{aligned} $ Repeat until B = 0 OUTD $ \begin{array}{c} (C) \leftarrow (HL), HL \leftarrow HL \rightarrow HL $				Set flags
INIR $(HL) \leftarrow (C), HL \leftarrow HL + 1 \\ B \leftarrow B - 1 \\ Repeat until B = 0$ $(HL) \leftarrow (C), HL \leftarrow HL - 1 \\ B \leftarrow B - 1$ $(HL) \leftarrow (C), HL \leftarrow HL - 1 \\ B \leftarrow B - 1$ $(HL) \leftarrow (C), HL \leftarrow HL - 1 \\ B \leftarrow B - 1$ $(HL) \leftarrow (C), HL \leftarrow HL - 1 \\ B \leftarrow B - 1$ $(Repeat until B = 0)$ $OUT(n), A (n) \leftarrow A$ $OUT(C), r (C) \leftarrow r$ $OUTI (C) \leftarrow (HL), HL \leftarrow HL + 1 \\ B \leftarrow B - 1$ $OTIR (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1$ $OTDR (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1$ $OTDR (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1$ $OTDR (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1$ $OTDR (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1$ $Repeat until B = 0$ $OUTD (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1$ $Repeat until B = 0$ $OUTD (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1$ $Repeat until B = 0$ $OUTD (C) \leftarrow (HL), HL \leftarrow HL - 1 \\ B \leftarrow B - 1$ $Repeat until B = 0$ $C \leftarrow HL \rightarrow HL$		INI		
Repeat until B = 0 (HL) + (C), HL + HL - 1 B + B - 1 (HL) + (C), HL + HL - 1 B + B - 1 Repeat until B = 0 (OUT(n), A OUT(C), r (C) + r OUTI (C) + (HL), HL + HL + 1 B + B - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL + 1 B + B - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 B + B - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 B + B - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 B + B - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 B + B - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 B + B - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 B + B - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 B + B - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 B + B - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 B + B - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 B + B - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 B + B - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL - 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL + 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL + 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL + 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL + 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL + 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL + 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL + 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL + 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL + 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL + 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL + 1 Repeat until B = 0 OUTD (C) + (HL), HL + HL + 1 Repeat until B = 0 OUTD		INIR	$(HL) \leftarrow (C), HL \leftarrow HL + 1$	
INDR B \leftarrow B - 1		!		
STANTING		IND	$(HL) \leftarrow (C), HL \leftarrow HL - 1$	
OTIR $B \leftarrow B - 1$ OTIR $(C) \leftarrow (HL), HL \leftarrow HL + 1$ $B \leftarrow B - 1$ Repeat until $B = 0$ OUTD $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ OTDR $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ OTDR $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ Repeat until $B = 0$ JP nn JP cc, nn If condition cc is true $PC \leftarrow nn, \text{ else continue}$ $JR \ e \qquad PC \leftarrow PC + e$ $JR \ kk, e \qquad \text{ if condition kk is true}$ $PC \leftarrow PC + e, \text{ else continue}$ $JP (ss) \qquad PC \leftarrow ss$ $DJNZ \ e \qquad B \leftarrow B - 1, \text{ if } B = 0$ $\text{continue, else } PC \leftarrow PC + e$ CALL nn $(SP - 1) \leftarrow PC + (SP - 2) \leftarrow PC + PC$	UT			i
OTIR $B \leftarrow B - 1$ OTIR $(C) \leftarrow (HL), HL \leftarrow HL + 1$ $B \leftarrow B - 1$ Repeat until $B = 0$ OUTD $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ OTDR $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ OTDR $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ Repeat until $B = 0$ JP nn JP cc, nn If condition cc is true $PC \leftarrow nn, \text{ else continue}$ $JR \ e \qquad PC \leftarrow PC + e$ $JR \ kk, e \qquad \text{ if condition kk is true}$ $PC \leftarrow PC + e, \text{ else continue}$ $JP (ss) \qquad PC \leftarrow ss$ $DJNZ \ e \qquad B \leftarrow B - 1, \text{ if } B = 0$ $\text{continue, else } PC \leftarrow PC + e$ CALL nn $(SP - 1) \leftarrow PC + (SP - 2) \leftarrow PC + PC$	UTF	INDR		
OTIR $B \leftarrow B - 1$ OTIR $(C) \leftarrow (HL), HL \leftarrow HL + 1$ $B \leftarrow B - 1$ Repeat until $B = 0$ OUTD $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ OTDR $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ OTDR $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ Repeat until $B = 0$ JP nn JP cc, nn If condition cc is true $PC \leftarrow nn, \text{ else continue}$ $JR \ e \qquad PC \leftarrow PC + e$ $JR \ kk, e \qquad \text{ if condition kk is true}$ $PC \leftarrow PC + e, \text{ else continue}$ $JP (ss) \qquad PC \leftarrow ss$ $DJNZ \ e \qquad B \leftarrow B - 1, \text{ if } B = 0$ $\text{continue, else } PC \leftarrow PC + e$ CALL nn $(SP - 1) \leftarrow PC + (SP - 2) \leftarrow PC + PC$	9		=	
OTIR $B \leftarrow B - 1$ OTIR $(C) \leftarrow (HL), HL \leftarrow HL + 1$ $B \leftarrow B - 1$ Repeat until $B = 0$ OUTD $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ OTDR $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ OTDR $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ Repeat until $B = 0$ JP nn JP cc, nn If condition cc is true $PC \leftarrow nn, \text{ else continue}$ $JR \ e \qquad PC \leftarrow PC + e$ $JR \ kk, e \qquad \text{ if condition kk is true}$ $PC \leftarrow PC + e, \text{ else continue}$ $JP (ss) \qquad PC \leftarrow ss$ $DJNZ \ e \qquad B \leftarrow B - 1, \text{ if } B = 0$ $\text{continue, else } PC \leftarrow PC + e$ CALL nn $(SP - 1) \leftarrow PC + (SP - 2) \leftarrow PC + PC$	T Al			·
OTIR $B \leftarrow B - 1$ OTIR $(C) \leftarrow (HL), HL \leftarrow HL + 1$ $B \leftarrow B - 1$ Repeat until $B = 0$ OUTD $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ OTDR $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ OTDR $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ Repeat until $B = 0$ JP nn JP cc, nn If condition cc is true $PC \leftarrow nn, \text{ else continue}$ $JR \ e \qquad PC \leftarrow PC + e$ $JR \ kk, e \qquad \text{ if condition kk is true}$ $PC \leftarrow PC + e, \text{ else continue}$ $JP (ss) \qquad PC \leftarrow ss$ $DJNZ \ e \qquad B \leftarrow B - 1, \text{ if } B = 0$ $\text{continue, else } PC \leftarrow PC + e$ CALL nn $(SP - 1) \leftarrow PC + (SP - 2) \leftarrow PC + PC$	NPU		` '	
OTIR $(C) \leftarrow (HL), HL \leftarrow HL + 1$ $B \leftarrow B - 1$ $Repeat until B = 0$ $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ $Repeat until B = 0$ JP nn $PC \leftarrow nn$ $PC \leftarrow nn$ $PC \leftarrow nn, else continue$ $PC \leftarrow PC + e$ $PC \leftarrow PC + e, else continue$ $PC \leftarrow PC +$	П	OUTI		
OUTD Repeat until B = 0 (C) \leftarrow (HL), HL \leftarrow HL - 1 B \leftarrow B - 1 OTDR (C) \leftarrow (HL), HL \leftarrow HL - 1 B \leftarrow B - 1 Repeat until B = 0 JP nn JP cc, nn If condition cc is true PC \leftarrow nn, else continue JR e PC \leftarrow PC + e JR kk, e If condition kk is true PC \leftarrow PC + e, else continue JP (cs) JP (ss) PC \leftarrow ss DJNZ e B \leftarrow B - 1, if B = 0 continue, else PC \leftarrow PC + e CALL nn (SP-1) \leftarrow PC H (SP-2) \leftarrow PC L, PC \leftarrow nn If condition cc is false continue, else same as CALL nn RST L (SP-1) \leftarrow PC (SP-2) \leftarrow PC L \leftarrow C RET PC \leftarrow (SP+1) RET cc If condition cc is false continue, else same as RET RETI Return from interrupt, same as RET RETN Return from non-		OTIR		
OUTD $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ OTDR $(C) \leftarrow (HL), HL \leftarrow HL - 1$ $B \leftarrow B - 1$ Repeat until $B = 0$ JP nn JP cc, nn If condition cc is true PC \leftarrow nn, else continue JR e PC \leftarrow PC + e JR kk, e If condition kk is true PC \leftarrow PC + e, else continue JP (ss) DJNZ e B \leftarrow B - 1, if B = 0 continue, else PC \leftarrow PC + e CALL nn $(SP-1) \leftarrow PCH$ $(SP-2) \leftarrow PCL$, PC \leftarrow nn If condition cc is false continue, else same as CALL nn RST L (SP-1) \leftarrow PCH $(SP-2) \leftarrow$ PCL, PCH \leftarrow 0 PCL \leftarrow L RET PCL \leftarrow (SP), PCH \leftarrow (SP+1) RET cc If condition cc is false continue, else same as RET RETI Return from interrupt, same as RET RETN Return from non-			_	i
OTDR $ \begin{array}{c} B \leftarrow B-1 \\ (C) \leftarrow (HL), HL \leftarrow HL-1 \\ B \leftarrow B-1 \\ Repeat until B=0 \\ \end{array} $ $ \begin{array}{c} JP \text{ nn} \\ JP \text{ cc, nn} \\ JP \text{ cc, nn} \\ JP \text{ cc, nn} \\ JR \text{ e} \\ JR \text{ kk, e} \\ JR \text{ kk, e} \\ JR \text{ if condition kk is true} \\ PC \leftarrow PC+e, \text{ else continue} \\ PC \leftarrow PC+e, else continue$		OUTD		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		OOID		
Repeat until B = 0 JP nn PC \leftarrow nn JP cc, nn If condition cc is true PC \leftarrow nn, else continue JR kk, e If condition kk is true PC \leftarrow PC + e, else continue JP (ss) PC \leftarrow Ss DJNZ e B \leftarrow B - 1, if B = 0 continue, else PC \leftarrow PC + e CALL nn (SP-1) \leftarrow PC PC + C nn If condition cc is false continue, else same as CALL nn RST L (SP-1) \leftarrow PC C M		OTDR		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		IP nn	· · · · · · · · · · · · · · · · · · ·	(NZ PO
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Z PE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Š			\
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IUMI	JK KK, C		$\left \begin{array}{ccc} kk & \left \begin{array}{ccc} NZ & NC \\ Z & C \end{array}\right \right $
DJNZ e $B \leftarrow B-1$, if $B=0$ continue, else PC \leftarrow PC $+$ e $CALL$ nn $(SP-1) \leftarrow PC_H$ $(SP-2) \leftarrow PC_L$, PC \leftarrow nn $CALL$ cc, nn If condition cc is false continue, else same as $CALL$ nn C		JP (ss)		(`
CALL nn $(SP-1) \leftarrow PC_{H} \\ (SP-2) \leftarrow PC_{L}, PC \leftarrow nn \\ If condition cc is false \\ continue, else same as \\ CALL nn $ $RST L \qquad (SP-1) \leftarrow PC_{H} \\ (SP-2) \leftarrow PC_{L}, PC_{H} \leftarrow 0 \\ PC_{L} \leftarrow L $ $RET \qquad PC_{L} \leftarrow (SP), \\ PC_{H} \leftarrow (SP+1) \\ RET cc \qquad If condition cc is false \\ continue, else same as RET \\ RETI \qquad Return from interrupt, \\ same as RET \\ RETN \qquad Return from non-$ $CC \begin{cases} NZ & PO \\ Z & PE \\ NC & P \\ C & M \end{cases}$		' '	<i>*</i>	
CALL cc, nn If condition cc is false continue, else same as CALL nn				
CALL cc, nn If condition cc is false continue, else same as CALL nn RST L		CALL nn		NZ PO
Continue, else same as CALL nn RST L $(SP-1) \leftarrow PC_H$ $(SP-2) \leftarrow PC_L$, $PC_H \leftarrow 0$ $PC_L \leftarrow L$ RET $PC_L \leftarrow (SP)$, $PC_H \leftarrow (SP+1)$ RET $PC_H \leftarrow (SP+1)$ RETI Return from interrupt, same as RET RETN Return from non-	TTS	CALL cc, nn	_	$\begin{vmatrix} Z & PE \\ cc & NC & P \end{vmatrix}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C	,	•	C M
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S	D.C.T. V		`
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ART	RSTL	$(SP-1) \leftarrow PC_H$ $(SP-2) \leftarrow PC_T \cdot PC_T \leftarrow 0$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EST		$PC_L \leftarrow L$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	RET	$PC_L \leftarrow (SP),$	
Continue, else same as RET RETI Return from interrupt, same as RET RETN Return from non- CC Z PE NC P C M		250	$PC_{\mathbf{H}} \leftarrow (SP+1)$	
RETN Return from non-	SN	RET cc		
RETN Return from non-	TUR	RETI		cc \ NC P
l i	RE		_ :	[С М
maskable interrupt		RETN		
			maskable interrupt	

 $T_A = O^{\circ}C$ to $70^{\circ}C$, $V_{CC} = +5V \pm 5\%$, Unless Otherwise Noted.

Signal	Symbol	Parameter	Min	Max	Unit	Test Condition
	t _e	Clock Period	.4	[12]	μsec	
Φ	τ _w (ΦΗ)	Clock Pulse Width, Clock High	180	[E]	nsec	1
Ψ	t _w (ΦL)	Clock Pulse Width, Clock Low	180	2000	nsec	1
	t _{r, f}	Clock Rise and Fall Time		30	nsec	
·	^t D (AD)	Address Output Delay		145	nsec	
	tF (AD)	Delay to Float		110	nsec	
Δ	taem	Address Stable Prior to MREQ (Memory Cycle)	[1]		nsec	C _{L.} = 50pF
A ₀₋₁₅	taci	Address Stable Prior to IORQ, RD or WR (1/O Cycle)	[2]		nsec	CL - John
	t _{ca}	Address Stable from RD, WR, IORQ or MREQ	[3]		nsec	
	^t caf	Address Stable From RD or WR During Float	[4]		nsec	
	¹ D (D)	Data Output Delay		230	nsec	
	tF(D)	Delay to Float During Write Cycle		90	nsec]
	¹ SФ (D)	Data Setup Time to Rising Edge of Clock During M1 Cycle	50		nsec	
D_{0-7}	tSΦ(D)		60		nsec	$C_L = 50 pF$
	^t dem	Data Stable Prior to WR (Memory Cycle)	[5]		nsec] _
	^t dci	Data Stable Prior to \overline{WR} (1/O Cycle)	[6]		nsec]
	^t edf	Data Stable From WR	[7]			
_	t _H	Any Hold Time for Setup Time	0		nsec	
	[†] DLΦ (MR)	MREQ Delay From Falling Edge of Clock, MREQ Low		100	nsec	
	^t DHΦ (MR)	MREQ Delay From Rising Edge of Clock, MREQ High		100	nsec	1
MREQ	^t DHΦ (MR)	MREQ Delay From Falling Edge of Clock, MREQ High		100	nsec	C ₁ = 50pF
	tw (MRL)	Pulse Width, MREQ Low	[8]		nsec	1 -
	tw (MRH)	Pulse Width, MREQ High	[9]		nsec	<u></u>
	tDLФ (IR)	IORQ Delay From Rising Edge of Clock, IORQ Low		90	nsec	0 50 5
IODO	¹DLΦ(IR)	IORQ Delay From Falling Edge of Clock, IORQ Low		110	nsec	
IORQ	^t DHΦ (IR)	IORQ Delay From Rising Edge of Clock, IORQ High		100	nsec	C _L = 50pF
	^t DH⊕(IR)	IORQ Delay From Falling Edge of Clock, IORQ High		110	nsec	1
	^t DLΦ (RD)	RD Delay From Rising Edge of Clock, RD Low		100	nsec	
RD	¹DL⊕ (RD)	RD Delay From Falling Edge of Clock, RD Low		130	nsec	0 . 60 5
КĐ	^t DHΦ (RD)	RD Delay From Rising Edge of Clock, RD High		100	nsec	$C_L = 50pF$
	¹DHΦ (RD)	RD Delay From Falling Edge of Clock, RD High		110	nsec	_
	¹DLΦ (WR)	WR Delay From Rising Edge of Clock, WR Low	İ	80	nsec	
WR	¹DLΦ(WR)	WR Delay From Falling Edge of Clock, WR Low		90	nsec	$C_{L} = 50pF$
WK	¹DHΦ(WR)	WR Delay From Falling Edge of Clock, WR High		100	nsec	CL - 30pr
	tw (WRL)	Pulse Width, WR Low	[10]		nsec	1
MI	tDL (M1)	M1 Delay From Rising Edge of Clock, M1 Low		130	nsec	C = 50-F
MI	tDH (M1)	MI Delay From Rising Edge of Clock, MI High		130	nsec	$C_L = 50 pF$
DECT!	tDL (RF)	RFSH Delay From Rising Edge of Clock, RFSH Low		180	nsec	G 70 F
RFSH	tDH (RF)	RFSH Delay From Rising Edge of Clock, RFSH High		150	nsec	$C_L = 50 pF$
WAIT	t _s (WT)	WAIT Setup Time to Falling Edge of Clock	70		nsec	
HALT	^t D (HT)	HALT Delay Time From Falling Edge of Clock		300	nsec	C _L = 50pF
ĪNT	t _s (IT)	INT Setup Time to Rising Edge of Clock	80		nsec	
NMI	tw (NML)	Pulse Width, NM1 Low	80		nsec	
BUSRQ	t _s (BQ)	BUSRQ Setup Time to Rising Edge of Clock	80		nsec	
	t		 	 		-
BUSAK	^t DL (BA) ^t DH (BA)	BUSAK Delay From Rising Edge of Clock, BUSAK Low BUSAK Delay From Falling Edge of Clock, BUSAK High		110	nsec	C _L = 50pF
RESET	t _s (RS)	RESET Setup Time to Rising Edge of Clock	90		nsec	
	t _F (C)	Delay to Float (MREQ, IORQ, RD and WR)		100	nsec	
	T(C)		<u> </u>	ļ		

[12]
$$t_c = t_{w(\Phi H)} + t_{w(\Phi L)} + t_r + t_f$$

[1]
$$t_{acm} = t_{w(\Phi H)} + t_f - 75$$

[2]
$$t_{aci} = t_c - 80$$

[3]
$$t_{ca} = t_{w(\Phi L)} + t_{r} - 40$$

[4]
$$t_{caf} = t_{w(\Phi L)} + t_r - 60$$

[5]
$$t_{dem} = t_c - 210$$

[6]
$$t_{dci} = t_{w(\Phi L)} + t_r - 210$$

[7]
$$t_{cdf} = t_{w(\Phi L)} + t_{r} - 80$$

[8]
$$t_{w(MRL)} = t_{c} - 40$$

[9]
$$t_{w(MRH)} = t_{w(\Phi H)} + t_f - 30$$

[10]
$$t_{w}(\overline{WRL}) = t_{c} - 40$$

[11]
$$t = 2t + t = 80$$

NOTES:

- A. Data should be enabled onto the <u>CPU</u> data bus when \overline{RD} is active. During interrupt acknowledge data should be enabled when $\overline{M1}$ and $\overline{10RQ}$ are both active.
- B. All control signals are internally synchronized, so they may be totally asynchronous with respect to the clock.
- The RESET signal must be active for a minimum of 3 clock cycles.
- D. Output Delay vs. Loaded Capacitance

 $TA = 70^{\circ}C$ $Vcc = +5V \pm 5\%$

Add 10nsec delay for each 50pf increase in load up to a maximum of 200pf for the data bus & 100pf for address & control lines

E. Although static by design, testing guarantees $t_{w(\Phi H)}$ of 200 µsec maximum

Load circuit for Output

Absolute Maximum Ratings

Temperature Under Bias Storage Temperature Voltage On Any Pin with Respect to Ground Power Dissipation

Specified operating range. -65°C to +150°C -0.3V to +7V

1.5W

*Comment

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: For Z80-CPU all AC and DC characteristics remain the same for the military grade parts except Icc.

 $I_{cc} = 200 \text{ mA}$

Z80-CPU D.C. Characteristics

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{cc} = 5V \pm 5\%$ unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Condition
v _{ILC}	Clock Input Low Voltage	-0.3		0.45	٧	
v _{IHC}	Clock Input High Voltage	V _{cc} 6		V _{cc} +.3	٧	
v _{IL}	Input Low Voltage	-0.3		0.8	V	
v _{IH}	Input High Voltage	2.0		V _{cc}	V	
v _{OL}	Output Low Voltage			0.4	V	IOL=1.8mA
v _{OH}	Output High Voltage	2.4			V	l _{OH} = -250μA
I _{CC}	Power Supply Current			150	mA	
I _{L1}	Input Leakage Current			10	μΑ	V _{IN} =0 to V _{cc}
I _{LOH}	Tri-State Output Leakage Current in Float			10	μΑ	V _{OUT} =2.4 to V _{cc}
I _{LOL}	Tri-State Output Leakage Current in Float			-10	μА	V _{OUT} =0.4V
l _{LD}	Data Bus Leakage Current in Input Mode			±10	μΑ	$0 \leqslant V_{IN} \leqslant V_{cc}$

Capacitance

 $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ unmeasured pins returned to ground

Symbol	Parameter	Max.	Unit
C_{Φ}	Clock Capacitance	35	pF
C _{IN}	Input Capacitance	5	pF
COUT	Output Capacitance	10	pF

Z80-CPU Ordering Information

C - Ceramic

P - Plastic

 $S - Standard 5V \pm 5\% 0^{\circ} to 70^{\circ}C$

E - Extended $5V \pm 5\% -40^{\circ}$ to 85° C M - Military $5V \pm 10\% -55^{\circ}$ to 125° C

Z80A-CPU D.C. Characteristics

 $T_A = 0^{\circ} C$ to $70^{\circ} C$ $V_{cc} = 5V \pm 5\%$ unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Condition
v_{ILC}	Clock Input Low Voltage	-0.3		0.45	V	
v _{IHC}	Clock Input High Voltage	V _{cc} 6		V _{cc} +.3	V	
v _{IL}	Input Low Voltage	-0.3		0.8	V	
v_{iH}	Input High Voltage	2.0		V _{cc} .	V	
v_{OL}	Output Low Voltage			0.4	V	l _{OL} =1.8mA
v_{OH}	Output High Voltage	2.4			V	$I_{OH} = -250\mu\Lambda$
1 _{CC}	Power Supply Current		90	200	mA	_
I _{LI}	Input Leakage Current			10	μΑ	V _{IN} =0 to V _{ec}
LOH	Tri-State Output Leakage Current in Float			10	μΛ	V_{OUT} =2.4 to V_{ec}
l _{LOL}	Tri-State Output Leakage Current in Float			-10	μΑ	V _{OUT} =0.4V
l _{LD}	Data Bus Leakage Current in Input Mode			±10	μΛ	$0 \le V_{1N} \le V_{cc}$

Capacitance

 $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ unmeasured pins returned to ground

Parameter Max. Unit c_{Φ} Clock Capacitance 35 рF рF c_{IN} Input Capacitance Output Capacitance pF C_{OUT}

Z80A-CPU **Ordering Information**

C - Ceramic

P - Plastic

S - Standard 5V ±5% 0° to 70°C

 $T_A = O^{\circ}C$ to $70^{\circ}C$, $V_{cc} = +5V \pm 5\%$, Unless Otherwise Noted.

Signal	Symbol	Parameter	Min	Max	Unit	Test Condition
ф	ι _c t _w (ΦΗ) t _w (ΦL)	Clock Period Clock Pulse Width, Clock High Clock Pulse Width, Clock Low Clock Rise and Fall Time	.25 110 110	[112] [E] 2000	μsec nsec nsec nsec	
A ₀₋₁₅	^t D (AD) [†] F (AD) [†] acm [†] aci [†] ca [†] caf	Address Output Delay Delay to Float Address Stable Prior to MREQ (Memory Cycle) Address Stable Prior to ORQ, RD or WR (I/O Cycle) Address Stable from RD, WR, IORQ or MREQ Address Stable From RD or WR During Float	(1) (2) (3) (4)	110	nsec nsec nsec nsec nsec nsec	C _L = 50pF
D ₀₋₇	¹D (D) ¹F (D) ¹S♠ (D) ¹S♠ (D) ¹dem ¹dei ¹cdf	Data Output Delay Delay to Float During Write Cycle Data Setup Time to Rising Edge of Clock During M1 Cycle Data Setup Time to Falling Edge of Clock During M2 to M5 Data Stable Prior to WR (Memory Cycle) Data Stable Prior to WR (I/O Cycle) Data Stable From WR	35 50 [5] [6]	150 90	nsec nsec nsec nsec nsec nsec	C _L = 50 pt
	^t H	Any Hold Time for Setup Time		0	nsec	
MREQ	tDL\$\overline{\pm}\$ (MR) tDH\$\overline{\pm}\$ (MR) tDH\$\overline{\pm}\$ (MR) tw (MRL) tw (MRH)	MREQ Delay From Falling Edge of Clock, MREQ Low MREQ Delay From Rising Edge of Clock, MREQ High MREQ Delay From Falling Edge of Clock, MREQ High Pulse Width, MREQ Low Pulse Width, MREQ High	[8]	85 85 85	nsec nsec nsec nsec nsec	C _L = 50pF
ĪORQ	^t DLΦ (IR) ^t DLΦ (IR) ^t DHΦ (IR) ^t DHΦ (IR)	IORQ Delay From Rising Edge of Clock, IORQ Low IORQ Delay From Falling Edge of Clock, IORQ Low IORQ Delay From Rising Edge of Clock, IORQ High IORQ Delay From Falling Edge of Clock, IORQ High		75 85 85 85	nsec nsec nsec	C _L = SOpF
RD	tDLΦ (RD) tDLΦ (RD) tDHΦ (RD) tDHΦ (RD)	RD Delay From Rising Edge of Clock, RD Low RD Delay From Falling Edge of Clock, RD Low RD Delay From Rising Edge of Clock, RD High RD Delay From Falling Edge of Clock, RD High		85 95 85 85	nsec nsec nsec	C _L = 50pF
wR	¹DLΦ (WR) ¹DLΦ (WR) ¹DHΦ (WR) ¹w (WRL)	WR Delay From Rising Edge of Clock, WR Low WR Delay From Falling Edge of Clock, WR Low WR Delay From Falling Edge of Clock, WR High Pulse Width, WR Low	[10]	65 80 80	nsec nsec nsec nsec	C _L = 50pF
Mi	tDL (M1)	M1 Delay From Rising Edge of Clock, M1 Low M1 Delay From Rising Edge of Clock, M1 High		100 100	nsec nsec	C _L = 50 _p F
RFSH	^t DL (RF) ^t DH (RF)	RFSH Delay From Rising Edge of Clock, RFSH Low RFSH Delay From Rising Edge of Clock, RFSH High		130 120	nsec nsec	C _L = 50pF
WAIT	^t s (WT)	WAIT Setup Time to Falling Edge of Clock	70		nsec	
HALT	^t D (HT)	HALT Delay Time From Falling Edge of Clock		300	nsec	C _L = 50pF
ĪNT	15s (III)	INT Setup Time to Rising Edge of Clock	80		nsec	
NMI .	l _w (NML)	Pulse Width, NM1 Low	80		nsec	
BUSRQ	ts (BQ)	BUSRQ Setup Time to Rising Edge of Clock	50		nsec	
BUSAK	^t DL (BA) ^t DH (BA)	BUSAK Delay From Rising Edge of Clock, BUSAK Low BUSAK Delay From Falling Edge of Clock, BUSAK High		100 100	nsec nsec	C _L = SOpF
RESET	ts (RS)	RESET Setup Time to Rising Edge of Clock	60		nsec	
	t _F (C)	Delay to Float (MREQ, TORQ, RD and WR)		80	nsec	
	tmt	M1 Stable Prior to IORQ (Interrupt Ack.)	Hat		nsec	

[12]
$$t_c = t_{w(\Phi H)} + t_{w(\Phi L)} + t_r + t_f$$

[1]
$$t_{acm} = t_{w(\Phi H)} + t_f - 65$$

[2]
$$t_{aci} = t_c - 70$$

[3]
$$t_{ca} = t_{w(\Phi L)} + t_r - 50$$

[4]
$$t_{caf} = t_{w(\Phi L)} + t_r - 45$$

[5]
$$t_{dem} = t_c - 170$$

[6]
$$t_{dci} = t_{w(\Phi L)} + t_r - 170$$

[7]
$$t_{cdf} = t_{w(\Phi L)} + t_r - 70$$

[8]
$$t_{w}(\overline{MR}L) = t_{c} - 30$$

[9]
$$t_{w(\overline{MRH})} = t_{w(\Phi H)} + t_f - 20$$

[10]
$$t_{w}(\overline{WR}L) = t_{c} -30$$

[11]
$$t_{--} = 2t_{-} + t_{--}c_{-}c_{+} + t_{c} - 6t_{-}$$

NOTES:

- A. Data should be enabled onto the CPU data bus when \overline{RD} is active. During interrupt acknowledge data should be enabled when $\overline{M1}$ and $\overline{10RQ}$ are both active.
- B. All control signals are internally synchronized, so they may be totally asynchronous with respect to the clock.
- C. The RESET signal must be active for a minimum of 3 clock cycles.
- D. Output Delay vs. Loaded Capacitance

 $TA = 70^{\circ}C$ $Vcc = +5V \pm 5\%$

Add 10nsec delay for each 50pf increase in load up to maximum of 200pf for data bus and 100pf for

E. Although static by design, testing guarantees $t_{w(\Phi H)}$ of 200 usec maximum

Load circuit for Output

Package Configuration

Package Outline

^{*}Dimensions for metric system are in parentheses